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Abstract. Series expansions have been derived for the percolation probability of a generalized
Domany–Kinzel cellular automaton with two equivalent absorbing states. The analysis of the
series generally yields estimates of the critical exponentβ = 1.00±0.05, consistent with earlier
Monte Carlo studies thus confirming that the model belongs to the same universality class as
branching annihilating random walks with an even number of offspring. There is evidence to
suggest that when the probability of spreading from two active sites becomes small a new critical
behaviour emerges.

1. Introduction

Models exhibiting a continuous phase transition from an ‘active’ steady state to an absorbing
‘inactive’ state are encountered in a wide variety of problems such as fluid flow in porous
media, chemical reactions, population dynamics, catalysis, epidemics, forest fires, biological
and even galactic evolution. By far the most ubiquitous of these classes is that of directed
percolation (DP). It is by now generally accepted that DP is the generic universality class
for non-equilibrium models with such active-to-inactive phase transitions. A recent review
of many models in this class can be found in [1]. The only major exception to the DP rule is
a set of models with an additional local conservation law and/or symmetry among different
absorbing states. Among the first such models were a probabilistic cellular automaton [2, 3]
and a kinetic Ising model [4]. Branching annihilating random walks with anevennumber
of offspring, where the number of particles is conserved locally modulo 2, also belongs to
this universality class [5–8], which I shall refer to as theparity conserving(PC) universality
class. Recently many new models have been reported as belonging to this new universality
class [9–15].

As demonstrated by Domany and Kinzel [16], DP on the square lattice can be seen as
a one-dimensional stochastic cellular automaton in which the preferred directiont is time.
DP is thus a model for a simple branching process in which a sitex occupied at timet may
give rise to zero or one offspring on each of the sitesx ± 1 at time t + 1. The evolution
of the model is determined by the conditional probabilitiesW(σx |σl, σr) of finding the site
(x, t) in stateσx given that the sites(x − 1, t − 1) and (x + 1, t − 1) were in statesσl
and σr , respectively, withσi = 1 if site i is occupied and 0 otherwise. One has a free
hand in choosing these probabilities as long as one respects conservation of probability,
W(1|σl, σr) = 1− W(0|σl, σr), and the conditionW(1|0, 0) = 0 which ensures that the
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Table 1. Evolution rules for the generalized Domany–Kinzel model with two equivalent
absorbing states.

σl, σr AA AI1 I1A AI2 I2A I1I1 I2I2 I1I2 I2I1

W(A|σl, σr ) p2 p1 p1 p1 p1 0 0 1 1
W(I1|σl, σr ) (1− p2)/2 1− p1 1− p1 0 0 1 0 0 0
W(I2|σl, σr ) (1− p2)/2 0 0 1− p1 1− p1 0 1 0 0

process has an absorbing state. Bond and site percolation correspond to the particular
choices

W(0|σl, σr) = (1− p)σl+σr (bond) (1)

W(0|σl, σr) = (1− p)σl+σr−σlσr (site). (2)

Recently, Hinrichsen [15] studied a generalized version of the Domany–Kinzel model in
which there aren equivalent absorbing states. Forn = 1 one recovers the usual Domany–
Kinzel model, while forn = 2 the model belongs to the PC universality class provided the
symmetry between absorbing states is preserved. In the casen = 2 each site can be in one
of three states: there is one active stateA and two equivalent inactive statesI1 andI2. The
evolution is governed by the conditional probabilities listed in table 1. In this paper I shall
always be looking at situations in whichp2 is a simple function (polynomial) ofp1 = p,
e.g. the casesp2 = p andp2 = 2p − p2, which are the analogues of site and bond DP,
respectively. The behaviour of the Domany–Kinzel model is controlled by the branching
probabilityp. Whenp is smaller than a critical valuepc the branching process always dies
out, while forp > pc there is a non-zero probabilityP(p) it will survive indefinitely. At
pc the survival probability vanishes as a power law,

P(p) ∝ (p − pc)
β p→ p+c . (3)

In the case of ordinary DP the critical exponentβ is known to a very high degree of
accuracy. The most accurate estimate is that of [17]β = 0.276 49(4), where the number in
parentheses indicate the error in the last digit. The estimates ofβ for the PC universality
class differ from the DP value and generally the numerical evidence suggestsβ = 0.95(5),
where the rather large error reflects the inherent difficulty in obtaining accurate estimates
for β and the often rather large discrepancy among the various studies. Here I shall briefly
review the various estimates. There are two different ways of defining and measuring the
exponentβ, the first of which was given above. The second is through measuring how
the steady-state concentration of active sites vanishes atpc. In the first case one studies
the ultimate survival probability (as a function ofp) of a system with initially just one or
two active sites while in the second case one typically starts with a large lattice with all
sites initially active and then measures the ultimate (larget limit) concentration of active
sites. For DP there is ample numerical and theoretical evidence that the two exponents
are identical, however, this need not necessarily be the case [18, 19]. Estimates forβ

based on the first method are 0.94(6) [3], 0.93(5) [6], and 0.97(8) [8], while the estimates
from the second method include 0.922(5) [7], 0.88(4) [10], 0.88(3) [11], and 0.90(5) and
0.93(5) [15]. Given the present accuracy of these estimates there is no compelling reason
to believe that the twoβ ’s are different. In an attempt to obtain more accurate estimates
for β I have calculated a series expansion for the percolation probability of the generalized
Domany–Kinzel model.
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Figure 1. The directed square lattice with orientation given by the arrows. The sites marked by
large filled circles indicate the position of the boundary line prior to moving it from the centre
site x′ to the shaded site atx.

2. Series expansion technique

Consider the calculation of the series expansion of the percolation probability for directed
percolation [20, 21] on a square lattice oriented as in figure 1. Clusters growing from
a single initial site can only reach the sites shown in figure 1 below the origin O. This
naturally leads to a finite-lattice approximation toP , namely the probabilityPn that the
origin is connected to at least one site in thenth row. Pn is a polynomial in the variable
q = 1− p (this turns out to be the natural high-density variable) with integer coefficients,
and the coefficients ofqk are identical to those ofP(q) for k 6 n+ 1. For the generalized
Domany–Kinzel model the calculation of the series expansion for the percolation probability
is essentially unchanged, and I will therefore only briefly describe the method.Pn(q) is
calculated as 1− P̃n(q), whereP̃n(q) is the probability that no paths lead to leveln, while
starting from a single active site with all other sites in the initial row being in either state
I1 or stateI2. As stated earlier the inactive states are equivalent and from now on I shall
assume thatI1 is the ‘background’ state. If no paths lead to leveln all sites on leveln
(and onward) must be in stateI1, i.e. the system has reached an absorbing state. As is the
case for DPPn(q) yields the firstn+ 1 terms of the series expansion forP(q). P̃n(q) can
be calculated by summing over all configurations on the lattice in figure 1 with the origin
in the active state and all states on leveln (and outside those shown in the figure) in state
I1. Each configuration carries a weight given by the product over all the local weights of
down-pointing triangles, such as that formed by the three sites(x, x ′, y) which contribute
the weightW(σx |σx ′ , σy). The sum over all configurations can be performed by moving a
boundary line through the lattice. At any given stage this line cuts through a number of,
saym, lattice sites thus leading to a total of 3m possible configurations along this line. For
each configuration along the boundary line one maintains a (truncated) polynomial which
equals the sum of the product of weights over all possible states on the side of the boundary
already traversed. The boundary is moved through the lattice one site at a time. In figure 1
we show how the boundary is moved in order to pick up the weight associated with a
given triangle at positionx along the boundary line. LetSx = (σ1, . . . , σx, . . . , σm), be the
configuration of sites along the boundary with stateσx at positionx, whereσi = 0, 1, or 2
corresponding to, e.g. the state being eitherI1, I2, or A, respectively. Then in moving the
boundary fromx ′ to x, from the top left to the bottom of the triangle formed by the sites
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(x, x ′, y), the polynomials associated with these configurations are updated as

P(Sx) =
∑
σx′
W(σx |σx ′ , σy)P (Sx ′). (4)

As is the case for DP the major limitation is available memory and likewise this limitation
can be partially overcome by using a ‘pivoting’ algorithm [20, 21]. In this approach one cuts
the lattice in half with a line of sites, fixed in a particular state, which is used as a pivot-line
for the moving boundary. One now has to calculate the weight for each configuration of
fixed sites and obtain the final result by summing over all possible configurations. In this
manner the memory requirements grows as 3n/2 rather than 3n. The downside is an increase
in computer time and a more complicated algorithm. In this case the line of fixed sites starts
in the centre at leveln (recall that all sites on leveln+ 1 are in stateI1) and is parallel to
the left edge of the finite lattice and terminates just before the right edge.

I calculated the percolation probability series for three different cases. The first case
was for the general two-parameter model with the weights of table 1 using the variables
q1 = 1− p1 andq2 = (1− p2)/2. The need to retain a two-parameter expansion is costly
computationally. Longer series can be generated if one looks at specific choices forp2.
I have studied the special casesp2 = p1 = p and p1 = p, p2 = 2p − p2, which are
the analogues of site and bond DP, respectively. In both these cases I used the expansion
variableq = (1− p)/2. The choice of expansion variables ensures that the coefficients
appearing inPn are integers. In the general case I calculatedPn(q1, q2) up to n = 20,
while I was able to extend the calculations ton = 23 and 24 for the bond and site cases,
respectively.

For bond DP on the square lattice Baxter and Guttmann [20] demonstrated that the
series forP(q) can be extended considerably by determining correction terms toPn(q):

Pn − Pn+1 = qn+2
∑
r>0

qrdn,r . (5)

We shall calldn,r the rth correction term. Obviously if one can find formulae fordn,r for
all r 6 k then one can use the series coefficients ofPn(q) to extend the series forP(q) to
ordern+ k + 2 since

an+2+j = an,n+2+j −
j∑
i=0

dn+k−i,i (6)

for all j 6 k, where ai and an,i are the coefficients inP(q) and Pn(q), respectively.
For this case the first correction term was conjectured to be the Catalan numbers [20],
dn,0 = Cn = (2n)!/(n!(n + 1)!). This conjecture has since been proved [22, 23]. Baxter
and Guttmann also found that the higher-order correction terms can be expressed as linear
functions ofdn,0. For the generalized Domany–Kinzel model I find that the first correction
term is given by a quite simple recurrence relation which is readily identified using the
Gfun package [24]. In the two-variable case I looked at the generalizations of the site and
bond cases, i.e.q1 = (1− p1)/2 with q2 = zq1 and q2 = zq2

1, respectively, wherez is
a constant. The first correction term for the bond case is very simple and independent
of z, dn,0 = 2n+1Cn. The factors 2n+1 merely arise because the expansion variable is
q1 = (1− p1)/2 rather than 1− p as for bond DP. However, for the site casedn,0 depends
on z and is given by the recurrence relation,

dn+3,0 = {[2(3z3+ 8z2+ 13z − 1)n2+ (39z3+ 124z2+ 170z − 14)n

+3(21z3+ 79z2+ 92z − 8)]dn+2,0− 3[2(z4− z3− 9z2+ 16z − 4)n2

+(9z4− 13z3− 66z2+ 132z − 40)n+ (10z4− 13z3− 56z2+ 132z − 48)]
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×dn+1,0+ (z5− 10z4+ 40z3− 80z2+ 80z − 32)(2n2+ 5n+ 3)dn,0}
/[z(z + 1)(2n2+ 17n+ 36)]

d2,0 = 4z2+ 48z + 80 d1,0 = 4z + 16 d0,0 = 4. (7)

Thus for any value ofz one can derive a series correct to order 22.
In the two special cases the extension procedure was carried further and formulae were

found for the first three correction terms in the site case and the first seven correction terms
in the bond case. The percolation probability series for the site case was thus extended
to order 29 while the series was extended to order 32 in the bond case. The procedure
for finding the formulae for the higher-order correction terms is very similar to the DP
case [20, 21], i.e. the higher-order correction terms are expressed as linear functions of the
first correction term. Readers interested in the details can contact the author for further
information.

3. Series analysis and results

The series were analysed using Dlog–Padé approximants (see [25] for a review), which
yields estimates forβ andqc. Here it suffices to say that a [L,M] Dlog–Pad́e approximant
to a functionf is formed by approximating the logarithmic derivative off by the ratio of
two polynomials

d

dx
ln f (x) = PL(x)

QM(x)
. (8)

QM andPL are polynomials of orderM andL, respectively, whose coefficients are chosen
such that the series expansion ofPL/QM agree with the firstL+M+1 terms of(d/dx) ln f .
The possible singularities of the series appear as the zeros of the polynomialQM and the
associated critical exponent is estimated from the residue. The physical singularity should
appear as the first zero on the positive real axis.

Before analysing the bond and site series a change of variable,q = 2q1, was performed
so thatq = 1 − p1. The estimates obtained from the Dlog–Padé analysis are listed in
tables 2 and 3, respectively. The analysis of the site series yields estimates ofβ close to
1. However, there is evidence that as the order of the approximants increase the estimates
tend to drift lower. The wide majority of approximants are consistent with the estimates

Table 2. Estimates ofqc and β from Dlog–Pad́e approximants to the percolation probability
series for thesite problem

[M − 2,M] [M − 1,M] [M,M] [M + 1,M] [M + 2,M]

M qc β qc β qc β qc β qc β

6 0.431 150 0.9740 0.432 205 1.0002 0.432 445 1.0068 0.432 443 1.0067 0.431 777 0.9964
7 0.433 229 1.0323 0.432 930 1.0217 0.433 480 1.0449 0.432 779 1.0160 0.434 562 1.1308
8 0.433 068 1.0267 0.433 041 1.0257 0.433 109 1.0284 0.433 235 1.0341 0.433 068 1.0262
9 0.433 061 1.0264 0.432 834 1.0199 0.433 167 1.0309 0.433 616 1.0523 0.432 938 1.0205

10 0.433 099 1.0279 0.433 103 1.0280 0.433 083 1.0272 0.432 898 1.0187 0.432 923 1.0198
11 0.433 100 1.0279 0.433 106 1.0281 0.432 945 1.0209 0.432 915 1.0195 0.432 926 1.0200
12 0.433 098 1.0278 0.432 767 1.0113 0.432 798 1.0132 0.433 025 1.0239 0.432 887 1.0182
13 0.432 801 1.0134 0.432 770 1.0115 0.432 378 0.9807 0.432 156 0.9567 0.432 887 1.0182
14 0.432 598 0.9999 0.432 092 0.9488 0.432 378 0.9807
15 0.432 598 0.9999
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Table 3. Estimates ofqc and β from Dlog–Pad́e approximants to the percolation probability
series for thebondproblem

[M − 2,M] [M − 1,M] [M,M] [M + 1,M] [M + 2,M]

M qc β qc β qc β qc β qc β

6 0.441 489 0.7592 0.440 786 0.7470 0.441 371 0.7570 0.428 888 0.6995 0.446 679 0.8869
7 0.441 362 0.7568 0.441 011 0.7503 0.453 068 1.2101 0.450 513 1.0519 0.441 808 0.7774
8 0.447 015 0.9010 0.450 690 1.0618 0.452 405 1.1655 0.455 304 1.4070 0.454 099 1.2914
9 0.440 350 0.7766 0.455 868 1.4691 0.454 379 1.3171 0.456 860 1.5801 0.452 262 1.1462

10 0.453 736 1.2597 — — 0.452 999 1.2026 0.450 938 1.0533 0.451 405 1.0857
11 0.452 351 1.1531 0.451 655 1.1035 0.451 472 1.0905 0.451 825 1.1171 0.452 985 1.2291
12 0.451 446 1.0886 0.451 570 1.0976 0.454 368 1.4356 0.451 867 1.1204 0.451 627 1.1016
13 0.451 964 1.1276 0.451 622 1.1013 0.451 652 1.1035 0.451 611 1.1003 0.451 674 1.1048
14 0.451 650 1.1033 0.451 636 1.1023 0.691 897 0.6134 0.451 622 1.1012 0.451 643 1.1028
15 0.451 412 1.0811 0.451 666 1.1045 0.451 718 1.1080 0.451 622 1.1012
16 0.451 706 1.1072 0.451 666 1.1045

qc = 0.4327(4) andβ = 1.00(3). This is also the special case studied in [15] with the result
pc = 0.5673(5) andβ = 0.90(5). While the estimates for the critical point are in excellent
agreement the estimates forβ do not overlap. Theβ measured by Hinrichsen is from Monte
Carlo simulations of the steady-state concentration of active sites, a method which is often
quite inaccurate due to finite-size corrections and convergence problems stemming from
critical slowing down. Despite the fact that the twoβ ’s could be different, as discussed
earlier, they are probably identical. The slight difference observed here could easily be due
to underestimation of the error bars. For the bond case the wide variety of approximants
favour the estimatesqc = 0.4516(3) andβ = 1.10(3). The estimate forβ is quite different
from other studies and not really consistent with the estimates for the site case or the studies
quoted in the introduction. If we check with the general bond case (table 4) we note that
this special case, corresponding toz = 5, stands out as yielding a particularly large estimate
for β.

In the two-variable case the series were calculated forq1 = (1−p1)/2 with q2 = zq1/10
andq2 = zq2

1/5, respectively, wherez is a positive integer. Before analysing the series a
change of variable,q = 2q1, was performed. Table 4 lists estimates ofqc andβ for various
values ofz. The estimates were obtained as an average over most of the approximants with
|M−L| 6 2 andM+L > 18. The quoted errors were calculated as one standard deviation
among the approximants used in obtaining the estimates. As one would expect, given the
significantly shorter series, the estimates are not as well converged as in the special cases.
Generally the estimates are consistent withβ ' 1. Unfortunately most of the estimates
are marred by quite large error bars. This is especially true for largez; furthermore, note
that the series for the site case generally appear to yield estimates with smaller error bars.
However, given that one expectsβ to be the same for allz and in both cases, all one can
say confidently from this analysis is thatβ = 1.0± 0.1, which obviously is fully consistent
with the estimates given above and those from other studies quoted in the introduction. It
is, however, worth noting that in many cases for intermediate values ofz the error bars
are quite small, and in particular the site case seems to favour a value ofβ close to 1. In
both cases (especially the site case) one observes that theβ-estimates seems to decrease
systematically with increasingz, but the error bars are too large to determine whether this
a true effect or just a coincidence.
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Table 4. Estimates ofqc and β from Dlog–Pad́e approximants to the percolation probability
series for various values ofz for the generalized site and bond problems.

Site Bond

z qc β qc β

1 0.467 50(27) 0.657 5(83) 0.467 92(14) 0.6432(43)
2 0.456 36(28) 0.678 8(29) 0.456 7(12) 0.6597(89)
3 — — — —
4 0.454 3(24) 1.19(21) — —
5 0.449 6(12) 1.111(98) 0.4524(10) 1.167(81)
6 0.445 67(23) 1.084(15) 0.447 82(24) 1.071(12)
7 0.442 00(10) 1.059 6(61) 0.444 28(33) 1.043(16)
8 0.438 63(25) 1.038(14) 0.440 7(16) 1.008(72)
9 0.435 81(30) 1.034(15) 0.437 8(17) 0.993(75)

10 0.433 102 5(25) 1.028 01(10) 0.436 2(10) 1.023(43)
11 0.431 27(24) 1.036 5(33) 0.433 9(20) 1.028(92)
12 0.427 30(39) 0.961(25) 0.427 6(50) 0.90(12)
13 0.424 96(20) 0.957(11) 0.426 0(43) 0.90(12)
14 0.422 62(47) 0.944(26) 0.430 4(53) 1.14(24)
15 0.419 99(75) 0.910(39) 0.427 9(38) 1.15(14)
16 0.4187(17) 0.940(81) 0.427 5(44) 1.16(18)
17 0.415 27(90) 0.865(41) 0.425 1(28) 1.12(11)
18 0.414 31(63) 0.901(26) 0.423 1(25) 1.110(97)
19 0.410 9(17) 0.830(73) 0.420 0(50) 1.07(15)

Table 5. Estimates ofqc and β from Dlog–Pad́e approximants to the percolation probability
series for the generalizedsite problem withz = 1 and 2.

[N − 2, N ] [N − 1, N ] [N,N ] [N + 1, N ] [N + 2, N ]

N qc β qc β qc β qc β qc β

z = 1
8 0.462 991 0.4924 0.466 172 0.6141 0.466 335 0.6197 0.467 795 0.6660 0.467 437 0.6551
9 0.470 288 0.7252 0.467 944 0.6705 0.467 164 0.6463 0.467 542 0.6584 0.467 282 0.6507

10 0.464 157 0.5310 0.467 591 0.6600 0.467 871 0.6690 0.466 374 0.6290 0.467 281 0.6507
11 0.467 768 0.6656 0.467 043 0.6448 0.467 870 0.6690

z = 2
8 0.456 243 0.6770 0.456 405 0.6790 0.456 157 0.6754 0.456 369 0.6783 0.456 401 0.6787
9 0.456 331 0.6779 0.456 717 0.6832 0.456 401 0.6787 0.456 368 0.6782 — —

10 0.456 465 0.6797 0.456 639 0.6821 0.459 227 0.7410 — — — —
11 0.455 760 0.6729 — — 0.459 224 0.7409

The only exemptions to the general behaviour described above are the casesz = 1 and
2 where significantly smaller estimates forβ occur. For the valuez = 3 (andz = 4 in the
bond case) the series are so ill behaved that no meaningful estimates could be obtained.
Table 5 lists the estimates obtained from Dlog–Padé approximants to the generalized site
problem at the valuesz = 1 and 2. As can be seen the estimates forz = 1 are quite stable
and favour a value ofβ = 0.66(1), though there are quite a few approximants yielding very
different estimates. The situation forz = 2 (and for the bond case) is similar, though in
this case the spread is greater and many approximants yield no estimate at all. This raises
the intriguing possibility that for low values ofz a different critical behaviour occurs. The
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fact that no estimates could be obtained forz = 3 supports the view that something novel
happens asz is decreased. However, given the relatively short series and that the estimates
are quite scattered no firm conclusion can be reached at present. It should be mentioned
that for z = 0 the series show thatP(q) = (1− 2q)/(1− q)2, so in this case there is a
critical point atqc = 1

2 with exponentβ = 1.

4. Summary and discussion

Series have been derived for the percolation probability of a generalized Domany–Kinzel
cellular automaton with two equivalent absorbing states. Analysis of the series clearly
demonstrates that this model belongs to the parity conserving universality class of branching
annihilating random walks with an even number of offspring. Contrary to what one might
have hoped, the estimates obtained for the critical exponentsβ are not very accurate. Based
on the analysis of the site case I estimate thatβ = 1.00(5). While this estimate is a little
higher than those generally obtained for this universality class, it is not inconsistent with
earlier studies. An unresolved inconsistency is that the analysis of the bond case favours
the higher estimateβ = 1.10(3). More interesting is the possibility that for low values of
z a new critical behaviour occurs. Further study of this model is clearly warranted.
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[9] Menyhárd N 1994J. Phys. A: Math. Gen.27 6139
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