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Abstract. Series expansions have been derived for the percolation probability of a generalized
Domany-Kinzel cellular automaton with two equivalent absorbing states. The analysis of the
series generally yields estimates of the critical exporest 1.00+ 0.05, consistent with earlier
Monte Carlo studies thus confirming that the model belongs to the same universality class as
branching annihilating random walks with an even number of offspring. There is evidence to
suggest that when the probability of spreading from two active sites becomes small a new critical
behaviour emerges.

1. Introduction

Models exhibiting a continuous phase transition from an ‘active’ steady state to an absorbing
‘inactive’ state are encountered in a wide variety of problems such as fluid flow in porous
media, chemical reactions, population dynamics, catalysis, epidemics, forest fires, biological
and even galactic evolution. By far the most ubiquitous of these classes is that of directed
percolation (DP). It is by now generally accepted that DP is the generic universality class
for non-equilibrium models with such active-to-inactive phase transitions. A recent review
of many models in this class can be found in [1]. The only major exception to the DP rule is
a set of models with an additional local conservation law and/or symmetry among different
absorbing states. Among the first such models were a probabilistic cellular automaton [2, 3]
and a kinetic Ising model [4]. Branching annihilating random walks witreeennumber
of offspring, where the number of particles is conserved locally modulo 2, also belongs to
this universality class [5-8], which | shall refer to as thaity conserving PC) universality
class. Recently many new models have been reported as belonging to this new universality
class [9-15].

As demonstrated by Domany and Kinzel [16], DP on the square lattice can be seen as
a one-dimensional stochastic cellular automaton in which the preferred direagaime.
DP is thus a model for a simple branching process in which axsitecupied at time may
give rise to zero or one offspring on each of the sitek 1 at timer + 1. The evolution
of the model is determined by the conditional probabilitié¢o, |o;, o,) of finding the site
(x,t) in stateo, given that the sitegx — 1, — 1) and (x + 1, — 1) were in statesy,
and o,, respectively, witho; = 1 if site i is occupied and 0 otherwise. One has a free
hand in choosing these probabilities as long as one respects conservation of probability,
W(o;,0,) = 1 — W(0|oy, 0,), and the conditionW (1|0, 0) = O which ensures that the
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Table 1. Evolution rules for the generalized Domany—Kinzel model with two equivalent
absorbing states.

oy, 0y AA Al 1A Al A iy DI, Il DIl
W(Aloy,00)  p2 P1 P1 P1 21 0 0 1 1
W(hloi,0) (—p2/2 1-p1 1—p1 O 0 1 0 0 0
W(lzlo1,00) (L—p2)/2 0 0 1-p1 1-p1 O 1 0 0

process has an absorbing state. Bond and site percolation correspond to the particular
choices

W(Oloj,0,) = (L— p)**  (bond (1)
W(Olo, 0,) = (L— p)? o~ (site). 2)

Recently, Hinrichsen [15] studied a generalized version of the Domany—Kinzel model in
which there are: equivalent absorbing states. Foe= 1 one recovers the usual Domany—
Kinzel model, while forn = 2 the model belongs to the PC universality class provided the
symmetry between absorbing states is preserved. In thencas® each site can be in one
of three states: there is one active statand two equivalent inactive statésandl,. The
evolution is governed by the conditional probabilities listed in table 1. In this paper | shall
always be looking at situations in whighy is a simple function (polynomial) op1 = p,

e.g. the caseg, = p and p, = 2p — p?, which are the analogues of site and bond DP,
respectively. The behaviour of the Domany—Kinzel model is controlled by the branching
probability p. Whenp is smaller than a critical valug. the branching process always dies
out, while for p > p. there is a non-zero probabilit] (p) it will survive indefinitely. At

pc the survival probability vanishes as a power law,

P(p) o« (p — po)f p— e (3)

In the case of ordinary DP the critical exponehtis known to a very high degree of
accuracy. The most accurate estimate is that of fLA 0.276 494), where the number in
parentheses indicate the error in the last digit. The estimat@sfof the PC universality

class differ from the DP value and generally the numerical evidence sugtjes%95(5),

where the rather large error reflects the inherent difficulty in obtaining accurate estimates
for B and the often rather large discrepancy among the various studies. Here | shall briefly
review the various estimates. There are two different ways of defining and measuring the
exponents, the first of which was given above. The second is through measuring how
the steady-state concentration of active sites vanishgg.atn the first case one studies

the ultimate survival probability (as a function p) of a system with initially just one or

two active sites while in the second case one typically starts with a large lattice with all
sites initially active and then measures the ultimate (lard§jmit) concentration of active

sites. For DP there is ample numerical and theoretical evidence that the two exponents
are identical, however, this need not necessarily be the case [18, 19]. Estimates for
based on the first method are 0.94(6) [3], 0.93(5) [6], and 0.97(8) [8], while the estimates
from the second method include 0.922(5) [7], 0.88(4) [10], 0.88(3) [11], and 0.90(5) and
0.93(5) [15]. Given the present accuracy of these estimates there is no compelling reason
to believe that the tw@’s are different. In an attempt to obtain more accurate estimates
for B | have calculated a series expansion for the percolation probability of the generalized
Domany-Kinzel model.
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Figure 1. The directed square lattice with orientation given by the arrows. The sites marked by
large filled circles indicate the position of the boundary line prior to moving it from the centre
site x’ to the shaded site at

2. Series expansion technique

Consider the calculation of the series expansion of the percolation probability for directed
percolation [20,21] on a square lattice oriented as in figure 1. Clusters growing from
a single initial site can only reach the sites shown in figure 1 below the origin O. This
naturally leads to a finite-lattice approximation By namely the probabilityP, that the
origin is connected to at least one site in titl row. P, is a polynomial in the variable

g = 1 — p (this turns out to be the natural high-density variable) with integer coefficients,
and the coefficients af* are identical to those oP(¢) for k < n + 1. For the generalized
Domany—Kinzel model the calculation of the series expansion for the percolation probability
is essentially unchanged, and | will therefore only briefly describe the metlpd;) is
calculated as + P,(q), whereP,(¢) is the probability that no paths lead to levelwhile
starting from a single active site with all other sites in the initial row being in either state
I, or statel,. As stated earlier the inactive states are equivalent and from now on | shall
assume thaf; is the ‘background’ state. If no paths lead to leuehll sites on leveln

(and onward) must be in stafg, i.e. the system has reached an absorbing state. As is the
case for DPP,(¢) yields the firstn + 1 terms of the series expansion fB(g). P, (g) can

be calculated by summing over all configurations on the lattice in figure 1 with the origin
in the active state and all states on lexgland outside those shown in the figure) in state
I;. Each configuration carries a weight given by the product over all the local weights of
down-pointing triangles, such as that formed by the three sites’, y) which contribute

the weightW (o, |0, 0y). The sum over all configurations can be performed by moving a
boundary line through the lattice. At any given stage this line cuts through a number of,
saym, lattice sites thus leading to a total af ossible configurations along this line. For
each configuration along the boundary line one maintains a (truncated) polynomial which
equals the sum of the product of weights over all possible states on the side of the boundary
already traversed. The boundary is moved through the lattice one site at a time. In figure 1
we show how the boundary is moved in order to pick up the weight associated with a
given triangle at position along the boundary line. L&, = (o1,...,0x, ..., 0n), be the
configuration of sites along the boundary with stateat positionx, wheres; = 0, 1, or 2
corresponding to, e.g. the state being eitherl,, or A, respectively. Then in moving the
boundary fromx’ to x, from the top left to the bottom of the triangle formed by the sites
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(x, x’, y), the polynomials associated with these configurations are updated as
P(Sy) =) W(olow, 0,) P(Sy). @

As is the case for DP the major limitation is available memory and likewise this limitation
can be partially overcome by using a ‘pivoting’ algorithm [20, 21]. In this approach one cuts
the lattice in half with a line of sites, fixed in a particular state, which is used as a pivot-line
for the moving boundary. One now has to calculate the weight for each configuration of
fixed sites and obtain the final result by summing over all possible configurations. In this
manner the memory requirements grows 48 Bather than 3. The downside is an increase
in computer time and a more complicated algorithm. In this case the line of fixed sites starts
in the centre at levet (recall that all sites on level + 1 are in statd;) and is parallel to
the left edge of the finite lattice and terminates just before the right edge.

| calculated the percolation probability series for three different cases. The first case
was for the general two-parameter model with the weights of table 1 using the variables
g1=1— p;andg, = (1 — p2)/2. The need to retain a two-parameter expansion is costly
computationally. Longer series can be generated if one looks at specific choices for
| have studied the special casps = p1 = p and p; = p, p» = 2p — p?, which are
the analogues of site and bond DP, respectively. In both these cases | used the expansion
variableq = (1 — p)/2. The choice of expansion variables ensures that the coefficients
appearing inP, are integers. In the general case | calculaidy;, g2) up ton = 20,
while | was able to extend the calculationssic= 23 and 24 for the bond and site cases,
respectively.

For bond DP on the square lattice Baxter and Guttmann [20] demonstrated that the
series forP(q) can be extended considerably by determining correction tern# (p):

Py — Pyy1= qn+2 Z qrdn,r- (5)
r=0
We shall calld, , the rth correction term. Obviously if one can find formulae tr, for
all » < k then one can use the series coefficientgfy) to extend the series faP(¢) to
ordern + k + 2 since

J
Ap42+j = App42+j — E dn+k—i,i (6)
i=0

for all j < k, whereq; and a,,; are the coefficients inP(¢) and P,(q), respectively.

For this case the first correction term was conjectured to be the Catalan numbers [20],
dyo = C, = (2n)!/(n!(n + 1!). This conjecture has since been proved [22, 23]. Baxter
and Guttmann also found that the higher-order correction terms can be expressed as linear
functions ofd, o. For the generalized Domany—Kinzel model | find that the first correction
term is given by a quite simple recurrence relation which is readily identified using the
Gfun package [24]. In the two-variable case | looked at the generalizations of the site and
bond cases, i.eg; = (1 — p1)/2 with g, = z¢q1 and g, = quz, respectively, where is

a constant. The first correction term for the bond case is very simple and independent
of z, d,o = 2'*1C,. The factors 2! merely arise because the expansion variable is
q1 = (1 — p1)/2 rather than + p as for bond DP. However, for the site cag depends

on z and is given by the recurrence relation,

dyizo = {[2(32°3 4+ 822 + 13 — D)n? + (3%°% + 1242 4+ 170z — 14)n
+3(21z3 + 792 + 927 — 8)]dys20 — 3[2(z* — 23 — 922 + 167 — H)n?
+(9z* — 1323 — 66:% + 132 — 40)n + (10z* — 132% — 5672 + 132 — 48)]
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Xdpi10+ (2° — 10z* + 4073 — 80z% + 80z — 32)(21% + 5n + 3)d,. 0}
/[z(z + 1)(2n® + 17n + 36)]
doo = 47° + 48; + 80 dio=4z+16 doo = 4. @)

Thus for any value ot one can derive a series correct to order 22.

In the two special cases the extension procedure was carried further and formulae were
found for the first three correction terms in the site case and the first seven correction terms
in the bond case. The percolation probability series for the site case was thus extended
to order 29 while the series was extended to order 32 in the bond case. The procedure
for finding the formulae for the higher-order correction terms is very similar to the DP
case [20, 21], i.e. the higher-order correction terms are expressed as linear functions of the
first correction term. Readers interested in the details can contact the author for further
information.

3. Series analysis and results

The series were analysed using Dlog-®@aproximants (see [25] for a review), which
yields estimates fop andg.. Here it suffices to say that & [ M] Dlog—Pa@ approximant
to a function f is formed by approximating the logarithmic derivative pfby the ratio of
two polynomials

Pp(x) . (®)
Om(x)
Oy and P;, are polynomials of ordeM and L, respectively, whose coefficients are chosen
such that the series expansion®f/ Q,, agree with the firsL. + M +1 terms of(d/dx) In 1.
The possible singularities of the series appear as the zeros of the polyn@pniahd the
associated critical exponent is estimated from the residue. The physical singularity should
appear as the first zero on the positive real axis.

Before analysing the bond and site series a change of varigbi€2q,, was performed
so thatg = 1 — p;. The estimates obtained from the Dlog—Baghalysis are listed in
tables 2 and 3, respectively. The analysis of the site series yields estimageslade to
1. However, there is evidence that as the order of the approximants increase the estimates
tend to drift lower. The wide majority of approximants are consistent with the estimates

%Inf(x) =

Table 2. Estimates ofgc and 8 from Dlog—Pa@ approximants to the percolation probability
series for thesite problem

[M —2, M] [M—1, M] [M, M] [M+1, M] [M+2, M]

M qc B qc B qc B qc B qc B

6 0.431150 0.9740 0.432205 1.0002 0.432445 1.0068 0.432443 1.0067 0.431777 0.9964
7

8

0.433229 1.0323 0.432930 1.0217 0.433480 1.0449 0.432779 1.0160 0.434562 1.1308
0.433068 1.0267 0.433041 1.0257 0.433109 1.0284 0.433235 1.0341 0.433068 1.0262
9 0.433061 1.0264 0.432834 1.0199 0.433167 1.0309 0.433616 1.0523 0.432938 1.0205
10 0.433099 1.0279 0.433103 1.0280 0.433083 1.0272 0.432898 1.0187 0.432923 1.0198
11 0.433100 1.0279 0.433106 1.0281 0.432945 1.0209 0.432915 1.0195 0.432926 1.0200
12 0.433098 1.0278 0.432767 1.0113 0.432798 1.0132 0.433025 1.0239 0.432887 1.0182
13 0.432801 1.0134 0.432770 1.0115 0.432378 0.9807 0.432156 0.9567 0.432887 1.0182
14 0.432598 0.9999 0.432092 0.9488 0.432378 0.9807
15 0.432598 0.9999
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Table 3. Estimates ofg; and 8 from Dlog—Pa@ approximants to the percolation probability
series for thebond problem

[M —2,M] [M -1, M] [M, M] [M+1, M] [M+2, M]

M qc B qc B qc B qc B qc B

6 0.441489 0.7592 0.440786 0.7470 0.441371 0.7570 0.428888 0.6995 0.446679 0.8869
7

8

0.441362 0.7568 0.441011 0.7503 0.453068 1.2101 0.450513 1.0519 0.441808 0.7774
0.447015 0.9010 0.450690 1.0618 0.452405 1.1655 0.455304 1.4070 0.454099 1.2914
9 0.440350 0.7766 0.455868 1.4691 0.454379 1.3171 0.456860 1.5801 0.452262 1.1462

10 0.453736 1.2597 — — 0.452999 1.2026 0.450938 1.0533 0.451405 1.0857
11 0.452351 1.1531 0.451655 1.1035 0.451472 1.0905 0.451825 1.1171 0.452985 1.2291
12 0.451446 1.0886 0.451570 1.0976 0.454368 1.4356 0.451867 1.1204 0.451627 1.1016
13 0.451964 1.1276 0.451622 1.1013 0.451652 1.1035 0.451611 1.1003 0.451674 1.1048
14 0.451650 1.1033 0.451636 1.1023 0.691897 0.6134 0.451622 1.1012 0.451643 1.1028
15 0.451412 1.0811 0.451666 1.1045 0.451718 1.1080 0.451622 1.1012
16 0.451706 1.1072 0.451666 1.1045

qc = 0.43274) andB = 1.00(3). This is also the special case studied in [15] with the result
pe = 0.56735) and 8 = 0.90(5). While the estimates for the critical point are in excellent
agreement the estimates f®ido not overlap. Thg measured by Hinrichsen is from Monte
Carlo simulations of the steady-state concentration of active sites, a method which is often
quite inaccurate due to finite-size corrections and convergence problems stemming from
critical slowing down. Despite the fact that the tysds could be different, as discussed
earlier, they are probably identical. The slight difference observed here could easily be due
to underestimation of the error bars. For the bond case the wide variety of approximants
favour the estimateg. = 0.45163) andg8 = 1.10(3). The estimate fop is quite different
from other studies and not really consistent with the estimates for the site case or the studies
qguoted in the introduction. If we check with the general bond case (table 4) we note that
this special case, correspondingzte= 5, stands out as yielding a particularly large estimate
for B.

In the two-variable case the series were calculatedfet (1— p1)/2 with g, = zq1/10
and g, = zq?/5, respectively, where is a positive integer. Before analysing the series a
change of variabley = 2¢;, was performed. Table 4 lists estimatesypfand 8 for various
values ofz. The estimates were obtained as an average over most of the approximants with
IM —L| <2andM + L > 18. The quoted errors were calculated as one standard deviation
among the approximants used in obtaining the estimates. As one would expect, given the
significantly shorter series, the estimates are not as well converged as in the special cases.
Generally the estimates are consistent with~ 1. Unfortunately most of the estimates
are marred by quite large error bars. This is especially true for larderthermore, note
that the series for the site case generally appear to yield estimates with smaller error bars.
However, given that one expectsto be the same for ali and in both cases, all one can
say confidently from this analysis is thét= 1.0+ 0.1, which obviously is fully consistent
with the estimates given above and those from other studies quoted in the introduction. It
is, however, worth noting that in many cases for intermediate valuestb&é error bars
are quite small, and in particular the site case seems to favour a va@ieloe to 1. In
both cases (especially the site case) one observes th@-dstimates seems to decrease
systematically with increasing, but the error bars are too large to determine whether this
a true effect or just a coincidence.
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Table 4. Estimates ofgc and 8 from Dlog—Pa@ approximants to the percolation probability
series for various values af for the generalized site and bond problems.

Site Bond

< qc B qc B

0.445 67(23) 1.084(15) 0.44782(24)  1.071(12)
0.442 00(10) 1.0596(61)  0.44428(33) 1.043(16)
0.438 63(25) 1.038(14) 0.4407(16)  1.008(72)
9  0.43581(30) 1.034(15) 0.4378(17)  0.993(75)
10 0.4331025(25) 1.02801(10) 0.4362(10)  1.023(43)
11 0.43127(24) 1.0365(33)  0.4339(20)  1.028(92)
12 0.42730(39) 0.961(25) 0.4276(50)  0.90(12)
13 0.42496(20) 0.957(11) 0.4260(43)  0.90(12)
14 0.42262(47) 0.944(26) 0.4304(53)  1.14(24)
15  0.41999(75) 0.910(39) 0.4279(38)  1.15(14)
16  0.4187(17) 0.940(81) 0.4275(44)  1.16(18)
17 0.41527(90) 0.865(41) 0.4251(28)  1.12(11)
18  0.41431(63) 0.901(26) 0.4231(25)  1.110(97)
19 0.4109(17) 0.830(73) 0.4200(50)  1.07(15)

1 0.46750(27) 0.6575(83)  0.46792(14) 0.6432(43)
2 0.45636(28) 0.6788(29) 0.4567(12)  0.6597(89)
3 — — J— J—

4 0.4543(24) 1.19(21) — —

5 0.4496(12) 1.111(98) 0.4524(10)  1.167(81)
6

7

8

Table 5. Estimates ofgc and 8 from Dlog—Pa@ approximants to the percolation probability
series for the generalizesite problem withz = 1 and 2.

[N -2,N] [N -1, N] [N, N] [N+1,N] [N+2 N]

N dc B qc B qc B qc B qc B

8 0.462991 0.4924 0.466172 0.6141 0.466335 0.6197 0.467795 0.6660 0.467437 0.6551

9 0.470288 0.7252 0.467944 0.6705 0.467164 0.6463 0.467542 0.6584 0.467282 0.6507
10 0.464157 0.5310 0.467591 0.6600 0.467871 0.6690 0.466374 0.6290 0.467281 0.6507
11 0.467768 0.6656 0.467043 0.6448 0.467870 0.6690

8 0.456243 0.6770 0.456405 0.6790 0.456157 0.6754 0.456369 0.6783 0.456401 0.6787
9 0.456331 0.6779 0.456717 0.6832 0.456401 0.6787 0.456368 0.6782 — —

10 0.456465 0.6797 0.456639 0.6821 0.459227 0.7410 — — — —

11 0.455760 0.6729 — — 0.459224 0.7409

The only exemptions to the general behaviour described above are the;casesnd
2 where significantly smaller estimates feroccur. For the value = 3 (andz = 4 in the
bond case) the series are so ill behaved that no meaningful estimates could be obtained.
Table 5 lists the estimates obtained from Dlog-&@agproximants to the generalized site
problem at the values = 1 and 2. As can be seen the estimateszfer 1 are quite stable
and favour a value of = 0.66(1), though there are quite a few approximants yielding very
different estimates. The situation fer= 2 (and for the bond case) is similar, though in
this case the spread is greater and many approximants yield no estimate at all. This raises
the intriguing possibility that for low values af a different critical behaviour occurs. The
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fact that no estimates could be obtained fo 3 supports the view that something novel
happens as is decreased. However, given the relatively short series and that the estimates
are quite scattered no firm conclusion can be reached at present. It should be mentioned
that for z = 0 the series show tha®(¢) = (1 — 2¢)/(1 — ¢)?, so in this case there is a
critical point atg. = % with exponentg = 1.

4. Summary and discussion

Series have been derived for the percolation probability of a generalized Domany—Kinzel
cellular automaton with two equivalent absorbing states. Analysis of the series clearly
demonstrates that this model belongs to the parity conserving universality class of branching
annihilating random walks with an even number of offspring. Contrary to what one might
have hoped, the estimates obtained for the critical exporeats not very accurate. Based

on the analysis of the site case | estimate fhat 1.00(5). While this estimate is a little
higher than those generally obtained for this universality class, it is not inconsistent with
earlier studies. An unresolved inconsistency is that the analysis of the bond case favours
the higher estimat@ = 1.10(3). More interesting is the possibility that for low values of

z a new critical behaviour occurs. Further study of this model is clearly warranted.
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